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ABSTRACT 
An attempt has been made to solve the heat conduction equation in a multiconnected domain using both 
boundary fitted coordinate system and finite element method. It has been found that boundary fitted 
coordinate system takes significantly less time in setting up the grid lines or mesh points compared to the 
finite element method of ANSYS. It has also been established that the former method takes much less time 
in obtaining a grid independent solution of the temperature field compared to the later one. 
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INTRODUCTION 

Analysis in the field of heat transfer has undergone radical change in methodology in recent 
years because of the growth in speed and power of modern digital computers. These changes 
fostered creation of various numerical techniques to solve the partial differential equation that 
governs conduction heat transfer. One technique, the finite difference method, approximates the 
differential equation by transforming it to a set of algebraic equations. The solution to the 
original problem is then the solution to the set of algebraic equations. 

The heat conduction equation, or more generally the diffusion equation, is an elliptic type 
partial differential equation. Elliptic problems require information on all boundaries; therefore, 
the key to these problems is the accurate coupling of the boundaries of the interior. This is best 
accomplished when the boundaries coincide with the coordinate lines so that node points in the 
finite difference grid also coincide with the boundaries of the system under study. Finite difference 
expressions on or near boundaries, i.e., where boundaries and node points coincide, can be 
obtained without special interpolating formulas. However, many real problems involve irregular 
boundaries which require interpolation between boundaries and interior grid points. Such 
interpolations are inaccurate and produce large errors in the vicinity of strong curvature and 
shape discontinuities of the boundary. Alternatively the finite element method (FEM) is powerful 
in dealing with geometric complexity. However, automatic division into finite elements is no 
way a simple task and requires considerable experience. Although FEM can take care of the 
irregular geometry but specification of the Dirichlet and Neumann conditions on it is quite 
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cumbersome while it is quite straight forward in boundary fitted coordinate system. Nevertheless 
FEM has emerged as a powerful tool in solving partial differential equations in irregular geometry. 
There are few packages available which do automatic mesh generation in finite element and 
solve quite complicated problems in both two and three dimensions. ANSYS is one6 of them. 

Here in this paper our aim is to solve the two-dimensional steady state heat conduction 
equation with arbitrary shape multiconnected domains in a rectangular plate using boundary 
fitted coordinate system and compare the accuracy of the result with that of finite element 
method of ANSYS. It is to be noted here that boundary conforming coordinate system can be 
generated much more easily by solving a set of Poisson equations than compared with its 
counterpart FEM mesh generator. 

Methods for generation of curvilinear coordinate system, with all their details, are available 
in the literature1-4. Application of the method to the solution of the engineering problems is 
widely known. However, the comparison of the method with other available methods, so far its 
accuracy is concerned, is not much reported in literature. Goldman and Kao5 have given a 
comparison of the method with the analytical solution for a very simple geometry with a circular 
hole in a square plate. For complex geometry like arbitrary shape multiconnected domains a 
direct comparison of BFC with finite element method, which is equally capable of handling the 
situation, is not available. The present work is geared towards this direction. 

STATEMENT OF THE PROBLEM 
The present work aims for the solution of a steady state temperature field in a square plate with 
two arbitrary shape holes in it (Figure 1) by utilizing the method of boundary fitted coordinates 
and tries to compare the accuracy of the result with the finite element method of ANSYS6. For 
this purpose a plate of side 10 units each is selected with the arbitrary shape holes in it as shown 
in Figures 1 and 2. Boundary fitted grid lines are obtained in the physical domain (Figure 1) 
by solving the following equations1-3. 
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where 

The subscripts ξ and η in (1c) denote first partial derivatives with respect to ξ and η. The quantity 
J is the Jacobian of transformation. 

The steady state heat conduction equation applicable in the transformed plane may be expressed 
following the method of Uchikawa and Takeda7 as: 

where α, β, γ and J are stated in (1c). All of the coefficients α, β, etc., are calculated as a part 
of coordinate transformation and are known quantities. For the solution of (2) the following 
boundary conditions are employed in both the methods (FEM and BFC). 

(a) T = l at Y = 0 (3a) 
(b) T = 1 at X = 10 (3b) 

(heat flux going out or coming into the plate) 

(e) the two arbitrary shape inner holes are kept at a constant temperature of T = 0.2. 
Boundary conditions of the above form have been taken so as to include all types of boundary 
conditions in a single test problem. 

METHOD OF SOLUTION 
First, it is desirable to obtain a grid independent solution of the temperature field on the plate 
by finite element method. For this purpose triangular two-dimensional 6-node and quadrilateral 
2D 4-node elements were tried with various mesh points subjected to the boundary conditions 
written in (3). To ascertain a grid independent solution the temperature field was plotted on 
several selected lines like, X = 0, 2, 4, 6, 8, and Y = 2, 4, 6, 8, and 10. Solution of the temperature 
field with 504 elements 1113 nodes, 1109 elements 2377 nodes, 1802 elements 3815 nodes (all 
triangular 2D) and 1610 elements 1710 nodes (quadrilateral 2D) was obtained and plotted on 
the selected lines. It was observed that solution with 1109 elements, 1610 elements and 1802 
elements produced almost the same temperature field on all selected lines. So, as a final solution 
the temperature field with 1802 elements was selected for the purpose of comparison with BFC 
and the corresponding element plot is shown in Figure 2. 

Regarding the solution of boundary fitted coordinate system, (la) and (lb) were first expressed 
in finite difference form and solved by a point SOR (successive over relaxation) scheme with 
the coordinates of the physical domain as the boundary conditions in the transformed ξ−η plane. 
The coordinate control functions P and Q were set to zero on an experimental basis. The 
boundary fitted grid lines were obtained after the solution of (1) and are plotted in Figure 1. 
For the solution of (1) 65 x 25 (65 in ξ and 25 in η) mesh points were chosen with the relaxation 



82 S. K. DASH AND H. CHATTOPADHYAY 

factor as 1.8. It was observed that the solution of (1) with a SOR scheme requires relaxation 
parameter between 1.2 to 1.85. 

The transformed energy equation (2) was expressed in a finite difference scheme with the ξ 
and Η derivatives in central difference. The geometric parameters α/J, β/J and γ/J were calculated 
at the mid point of any two nodes. Thermal conductivity k, density ρ and specific heat c of the 
plate material were set to 1 for comparison purposes in both the calculations (present one and 
FEM), although (2) is a very convenient form for including variable property in the transformation 
process. The finite difference form of (2) was solved with point SOR scheme with the relaxation 
parameter varying between 1.4 to 1.8. The solution was assumed to have reached steady state 
when the maximum spatial variation of temperature over the whole domain was less than 10 - 7 

from one iteration to the other. For the comparison of temperature field with FEM the 
temperature on the selected lines was plotted. It was found that mesh points of 58 × 20 and 
65 × 25 could produce the same temperature profile as that of FEM on the selected lines 
(maximum deviation 0.7% from FEM with FEM as base) while mesh points of 40 × 25 and 
48 × 22 produced maximum deviation of 6.2% and 3.4%, respectively, when plotted on the 
selected lines. So the solution with 65 × 25 mesh points was taken to be the grid independent 
solution for BFC. 

RESULTS AND DISCUSSION 
It is cited in the Introduction that boundary confirming coordinate system could be generated 
much more easily compared to its counterpart FEM mesh generator. The FEM mesh generator 
normally takes more time in approximately setting up the same number of node points compared 
to the BFC system. Table 1 gives an indication of the CPU time (on an APOLLO DN 3500 
machine) involved in setting up various number of mesh points in both the methods on the 
same physical domain (Figures 1 and 2). It is difficult to get identically the same number of 
node points in both the methods. But a rough estimation of the node point setting time can be 
obtained from Table 1. Clearly from Table 1 it can be observed that BFC takes significantly 
less time in setting up almost equal number of node points as compared to FEM. 

Table 1 CPU time involved in setting up mesh points on the 
physical domain (Figures 1 and 2) by FEM (ANSYS) and BFC 

Method 

FEM 
(ANSYS) 

FEM 
(ANSYS) 

BFC 

Element 
type 

Triangular 
2D-6-node 

Quadrilateral 
4-node 

Quadrilateral 
4-node 

No. of 
elements 

111 
504 

1109 
1802 

68 
245 
532 

1410 
440 
550 
770 
990 

1320 
1536 
1650 

No. of 
nodes 

274 
1113 
2377 
3815 

81 
275 
569 

1478 
504 
616 
840 

1064 
1400 
1625 
1736 

CPU time 
(sec) 

36.4 
66.6 

130.4 
192.1 
25.5 
36.2 
55.5 

122.7 
7.6 
9.4 

12.3 
18.0 
27.1 
40.2 
42.4 
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It is well known that there will be grid clustering on the convex surfaces when the coordinate 
control function P and Q are set to zero. This is also evident from Figure 1. But in the FEM 
solution (Figure 2) mesh point density was deliberately kept high near the two holes in order 
to compare the isotherms with that of the solution of BFC. It can be observed from Figure 3 
that the isotherms obtained from both the methods are almost identical particularly near the 
zones of arbitrary shape holes. There is very little deviation in the upper left corner. It is suspected 
that this might have been caused because of the linear interpolations used in the contour plotting 
routine. 

In Figure 4 a comparison of the temperature profile (obtained using BFC) on the X wall 
(X = 0) and the Y wall (Y = 10) is made with the solution of FEM with the heat flux into the 
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Table 2 CPU time required to obtain a grid independent solution 
of the temperature field in the physical domain (Figure 1) 

Method 

FEM 
(ANSYS) 
BFC 

Element 
type 

Triangular 
2D-6-nodes 
Quadrilateral 
4-nodes 

No. of 
elements 

1109 
1802 
1536 

No. of 
nodes 

2377 
3815 
1625 

CPU time 
(sec) 

209.1 
314.4 
40.70 

plate at the Y wall. The agreement seems to be quite satisfactory. Also in Figure 5 a similar 
comparison has been made with the only change that the heat flux at the Y wall is going out 
of the plate. The temperature profiles on the two walls change drastically from those of 
Figure 4 but still the solutions from the two different methods agree very well. 

In the present calculation the heat flux is prescribed to be ±0.2 = ( − k ∂T/∂Y) at Y = 10. 
But in the FEM package of ANSYS this gradient condition cannot be directly specified, instead 
the heat flow at each node may be prescribed. For this purpose the total heat flow across the 
wall (Y = 10) was calculated and was distributed proportionally among all the nodes on the 
line Y = 10 in the FEM calculation. While prescribing the inner holes at a temperature T = 0.2 
all the nodes on the arbitrary boundary were to be identified manually and set to this value for 
the prediction of the temperature field using FEM. In case of BFC the arbitrary boundaries 
(two holes) lie on the straight line η = 1 and the line Y = 10 lies on line η = 25 making it very 
convenient to prescribe Dirichlet and Neumann boundary conditions on them. So a little 
discrepancy always remains between the two solvers while prescribing a gradient condition on 
the boundary. It is expected that some errors will always be brought in because of the above 
reason and it will be difficult to compare the relative accuracy of both the methods. However, 
judging from the view point of CPU time involved in both the methods in order to arrive at a 
grid independent solution (Table 2) it can be concluded that BFC has an advantage over FEM 
so far the solution of diffusion equation in a domain of arbitrary geometry is concerned. 
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